

Роль неопределенности измерений в управлении технологическим процессом на примере концентрата железованадиевого

В.В.Толмачев, зав.лабораторией ФГУП «УНИИМ» Н.А.Сытых, начальник УкП ОАО «Евраз КГОК» Л.Н.Коптякова, начальник бюро стат.анализа ОМК УКП ОАО «ЕВРАЗ КГОК»

Цель презентации

Обоснование активного участия метрологической службы предприятия в выработке совместно со службой технического контроля предприятия правил принятия решения о соответствии продукции на основе модели, учитывающий как вариацию характеристик продукции за счет влияющих факторов технологического процесса, так вероятностный характер измерительной информации, связанный с неопределенностью результата измерения.

Краткое содержание

1 Методика оценки риска несоответствия конкретной партии продукции с учетом неопределенности результата

2 Методика оценки измерительных возможностей изготовителя

3 Выбор границы принятия решения о соответствии (Задача потребителя)

4 Два подхода к синтезу системы принятия решений (Задача изготовителя)

Задача 1: Оценка конкретного риска

несоответствия

Задача 2: Оценка измерительных возможностей изготовителя

S

95% вероятность соответствия по м.д.железа

 $(C_m, y_m) = (1; 0, 18) \quad p_c = 0,95$

Задача 3: Установление границы принятия решения о соответствии

Известно:

•Неопределенность измерений

•Технологический разброс

интересующего

параметра, границы допуска

•Норма для риска потребителя

Найти:

•Границы интервала принимаемых значений

Случай границы снизу

$$R_{P} = \overset{\times}{\overset{\times}{0}}_{T_{L}} F_{c}^{\overset{\times}{\mathcal{A}}} \frac{A_{L} - h^{\overset{\circ}{\mathcal{O}}}}{U_{m}} \overset{\circ}{\overset{\circ}{\mathcal{A}}} g_{0}(h) dh \qquad \qquad R_{C} = \overset{T_{L}}{\overset{\times}{\mathcal{A}}}_{-\overset{\times}{\mathcal{A}}} F_{c}^{\overset{\times}{\mathcal{A}}} \frac{A_{L} - h^{\overset{\circ}{\mathcal{O}}}}{U_{m}} \overset{\circ}{\overset{\cdot}{\overset{\times}{\mathcal{A}}}} g_{0}(h) dh$$

Граница защитного интервала и риск потребителя

Граница интервала принятия и риски

10

Задача 4: Синтез системы принятия решений

Заданы: границы допуска 2

Заданы: измерительная система, допуски

Выбор измерительной системы Выбор границ принятия

Номограмма зависимости R_p, R_c от C_m и r

Номограмма зависимости R_p, R_c от C_m и r

Варианты границы допуска

Частости, %

Выводы

описано методическое решение задачи синтеза системы принятия решений о соответствии продукции, обеспечивающее повышение качества выпускаемой продукции, устранения и исключения отрицательных последствий недостоверных результатов измерений, опирающееся на статистическую модель технологического процесса и вероятностную модель распределения плотности вероятности результата измерения для конкретной системы контроля и испытаний предприятияизготовителя.